Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(15): 4242-4258, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259895

RESUMO

Wild animals are under constant threat from a wide range of micro- and macroparasites in their environment. Animals make immune responses against parasites, and these are important in affecting the dynamics of parasite populations. Individual animals vary in their anti-parasite immune responses. Genetic polymorphism of immune-related loci contributes to inter-individual differences in immune responses, but most of what we know in this regard comes from studies of humans or laboratory animals; there are very few such studies of wild animals naturally infected with parasites. Here we have investigated the effect of single nucleotide polymorphisms (SNPs) in immune-related loci (the major histocompatibility complex [MHC], and loci coding for cytokines and Toll-like receptors) on a wide range of immune and infection phenotypes in UK wild house mice, Mus musculus domesticus. We found strong associations between SNPs in various MHC and cytokine-coding loci on both immune measures (antibody concentration and cytokine production) and on infection phenotypes (infection with mites, worms and viruses). Our study provides a comprehensive view of how polymorphism of immune-related loci affects immune and infection phenotypes in naturally infected wild rodent populations.


Assuntos
Animais Selvagens , Polimorfismo de Nucleotídeo Único , Animais , Camundongos , Animais Selvagens/genética , Citocinas/genética , Fenótipo
2.
Discov Immunol ; 2(1): kyad025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567055

RESUMO

The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, driving microbial evolution. Secretory IgA is a major feature of the gut's adaptive immune response, and a substantial proportion of gut bacteria are coated with IgA, though the effect of this on bacteria is unclear. Here we hypothesize that IgA binding to gut bacteria is a selection pressure that will drive the evolution of IgA-bound bacteria, so that they will have a different evolutionary trajectory than those bacteria not bound by IgA. We know very little about the microbiome of wild animals and even less about their gut immune responses, but it must be a priority to investigate this hypothesis to understand if and how host immune responses contribute to microbiome evolution.

3.
J Evol Biol ; 34(4): 661-670, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33529428

RESUMO

In vertebrates, offspring survival often decreases with increasing maternal age. While many studies have reported a decline in fitness-related traits of offspring with increasing maternal age, the study of senescence in maternal effect through age-specific changes in offspring physiological condition is still at its infancy. We assessed the influence of maternal age and body mass on offspring physiological condition in two populations of roe deer (Capreolus capreolus) subjected to markedly different environmental conditions. We measured seven markers to index body condition and characterize the immune profile in 86 fawns which became recently independent of their known-aged mothers. We did not find striking effects of maternal age on offspring physiological condition measured at 8 months of age. This absence of evidence for senescence in maternal effects is likely due to the strong viability selection observed in the very first months of life in this species. Offspring physiological condition was, on the other hand, positively influenced by maternal body mass. Between-population differences in environmental conditions experienced by fawns also influenced their average body condition and immune phenotype. Fawns facing food limitation displayed lower values in some markers of body condition (body mass and haemoglobin levels) than those living in good quality habitat. They also allocated preferentially to humoral immunity, contrary to those living in good conditions, which allocated more to cellular response. These results shed a new light on the eco-physiological pathways mediating the relationship between mother's mass and offspring condition.


Assuntos
Cervos/fisiologia , Idade Materna , Fatores Etários , Animais , Peso Corporal , Feminino , Florestas , Herança Materna
4.
Artigo em Inglês | MEDLINE | ID: mdl-33144154

RESUMO

While evidence that telomere length is associated with health and mortality in humans and birds is accumulating, a large body of research is currently seeking to identify factors that modulate telomere dynamics. We tested the hypothesis that high levels of glucocorticoids in individuals under environmental stress should accelerate telomere shortening in two wild populations of roe deer (Capreolus capreolus) living in different ecological contexts. From two consecutive annual sampling sessions, we found that individuals with faster rates of telomere shortening had higher concentrations of fecal glucocorticoid metabolites, suggesting a functional link between glucocorticoid levels and telomere attrition rate. This relationship was consistent for both sexes and populations. This finding paves the way for further studies of the fitness consequences of exposure to environmental stressors in wild vertebrates.


Assuntos
Cervos/metabolismo , Glucocorticoides/metabolismo , Telômero , Animais , Feminino , Masculino
5.
J Anim Ecol ; 87(4): 921-932, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29931770

RESUMO

To secure mating opportunities, males often develop and maintain conspicuous traits that are involved in intrasexual and/or intersexual competition. While current models of sexual selection rely on the assumption that producing such traits is costly, quantifying the cost of allocating to secondary sexual traits remains challenging. According to the principle of allocation, high energy allocation to growth or sexual traits in males should lead to reduced energy allocation to the maintenance of cellular and physiological functions, potentially causing them to age faster, with impaired survival. We evaluated the short-term and delayed consequences of energy allocation to antlers early in life in two contrasted populations of roe deer, Capreolus capreolus. Although most males mate successfully for the first time in their fourth year, antlers are grown annually from the first year of life onwards. We tested the prediction that a high level of allocation to antler growth during the first two years of life should lead to lower body mass, antler size and survival during the early and late prime stages, as well as to reduced longevity overall. Growing and carrying long antlers during the first years of life was not associated with any detectable cost in the late prime stage. The positive association between antler growth in early life and adult body mass instead supports that fawn antler acts as an honest signal of phenotypic quality in roe deer. For a given body mass, yearling males growing longer antlers displayed impaired performance during their late prime. We also found a trend for a short-term survival cost of allocation to relative antler length during the second year of life. Yearling males that grow long antlers relative to their mass might display a fast life-history tactic. We argue that differential allocation to secondary sexual traits generates a diversity of individual trajectories that should impact population dynamics.


Assuntos
Chifres de Veado/fisiologia , Cervos/fisiologia , Metabolismo Energético , Longevidade , Fenótipo , Animais , França , Masculino , Suíça
6.
Biol Lett ; 13(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28954855

RESUMO

Telomere length (TL) represents a promising biomarker of overall physiological state and of past environmental experiences, which could help us understand the drivers of life-history variation in natural populations. A growing number of studies in birds suggest that environmental stress or poor environmental conditions are associated with shortened TL, but studies of such relationships in wild mammals are lacking. Here, we compare leucocyte TL from cross-sectional samples collected from two French populations of roe deer which experience different environmental conditions. We found that, as predicted, TL was shorter in the population experiencing poor environmental conditions but that this difference was only significant in older individuals and was independent of sex and body mass. Unexpectedly, the difference was underpinned by a significant increase in TL with age in the population experiencing good environmental conditions, while there was no detectable relationship with age in poor conditions. These results demonstrate both the environmental sensitivity and complexity of telomere dynamics in natural mammal populations, and highlight the importance of longitudinal data to disentangle the within- and among-individual processes that generate them.


Assuntos
Telômero , Animais , Aves , Estudos Transversais , Cervos , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...